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Cylindrically orthotropic materials having linear elastic stress-strain relations can possess a unique type 
of coupling between the radial and tangential directions. This type of anisotropy occurs when fibres have 
onion skin or radial morphologies which are characteristic of some graphite fibres and poly-p-phenylene 
terephthalamide fibres. Pulling on a long slender fibre having this type of anisotropy does not produce a 
uniaxial state of stress because the unequal Poisson ratios also cause both radial and tangential stresses. 
The magnitude of these predicted transverse stresses in relation to the axial stress is similar to the 
relationship of strengths in these principal directions. Hence, it is conceivable that fibre failure could be 
caused by fibre splitting from high transverse stresses rather than the longitudinal tensile stresses. 
Temperature changes and other factors causing dimensional changes such as swelling and pressure can 
similarly cause large stresses if the radial and tangential expansion coefficients are different. This type of 
axial-transverse coupling is known to limit certain designs in composite structures having this type of 
anisotropy, yet little has been done to understand fibres possessing these characteristics. This paper examines 
the complex state of stress that can result in fibres having cylindrically orthotropic linear elastic properties 
for several simple modes of deformation. 
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I N T R O D U C T I O N  

The high degree of axial molecular alignment observed 
for many polymeric high performance fibres would 
indicate strong mechanical anisotropy exists in these 
fibres. Mechanical properties in the fibre direction, such 
as modulus and strength, are high 1 because they derive 
from the oriented polymer backbone, whereas transverse 
and shear properties, which are dependent upon the much 
weaker secondary forces between chains, are considerably 
lower in value than the axial properties. Additionally, 
depending on the morphological development of the fibre 
structure, the possibility exists for anisotropy within the 
fibre cross section such that the radial and hoop 
directions are not mechanically equivalent. 

The clearest examples of anisotropic bodies are 
certainly the single crystals of various materials. In 
practical situations, however, most objects are composed 
of random arrangements of anisotropic domains giving 
rise to overall isotropic behaviour. On the other hand, 
macroscopic anisotropy is observed when such random 
arrangements give way to ordering by various types of 
growth or processing conditions. These higher degrees 
of ordering may be based at the molecular level or on a 
larger scale such as is the case for wood and composite 
materials. An example of anisotropic fibre structure is 
found in carbon and graphitic fibres where either a radial 
or onion skin morphology 2 may be developed. In this 
case, one transverse principal direction (either radial or 
hoop) is parallel to the graphitic basal planes whereas 
the other principal direction is perpendicular to the basal 
planes and hence the cross section exhibits anisotropy 
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similar to that of single crystal graphite 3'4. Transverse 
fibre anisotropy also exists for poly-p-phenylene 
terephthalamide (PPTA) fibres because of the radial 
arrangement of hydrogen bonded sheets of the PPTA 
molecules 5'6. Haraguchi e t  a l .  7 have also noted the 
development of preferred orientation of PPTA for 
solutions coagulated in various nonsolvents. Such 
preferred orientations could also possibly develop in 
other polymeric fibres due to various processing 
conditions and hence lead to cylindrically anisotropic 
structures. 

While morphological anisotropy of various fibres is 
known, little attention has been given to the examination 
of anisotropic fibre behaviour. The rather small lateral 
dimensions of available high performance fibres (10-20 
microns), along with their cylindrical geometry pose a 
formidable challenge to the experimentalist desiring 
knowledge other than of their axial mechanical 
properties. While certain high performance materials are 
amenable to study in other geometries of larger 
dimensions, most high performance polymeric materials 
are generally only available in fibre form, restricting the 
available means of examining their anisotropy. In this 
work, a general consideration of cylindrically orthotropic 
fibre behaviour is presented to explore the possible states 
of stress for simple test geometries. It will be shown that 
fascinating mechanical response occurs when the 
properties in the plane of the fibre cross section are not 
isotropic. In fact, simple states of stress are almost 
impossible for such anisotropic fibres. These effects are 
not well known and can be of considerable importance 
to those attempting to understand the properties of these 
materials. It is the intent of this work to draw attention 
to possible implications arising from cylindrical anisotropy 
to promote interest in this area. 
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GENERAL CONSIDERATIONS OF 
ANISOTROPY 

The texts of S. G. Lekhnitskii 8'9 are among the best 
sources of information on the stress analysis of 
anisotropic materials, especially concerning cylindrical 
anisotropy. We first review relevant aspects of mechanical 
anisotropy which, for the most part, is extracted from 
Lekhnitskii's work. 

The mechanical properties of an anisotropic elastic 
solid which can be treated as a continuous medium are 
defined by the generalized Hooke's Law 

ei=aijtTj ( i , j = l . . - 6 )  (1) 

for small strains where a linear relationship between 
stresses and strains is assumed. In equation (1) a 
summation over j is implied where aij represents the 
compliance constants, and aj and e i are the respective 
stress and strain measures using the generally employed 
contracted engineering notation s-ll  (we also adopt the 
notations ~ and ? for shearing stresses and strains). A 
consideration of the required symmetries of the stress 
and strain measures and of the conservation of energy, 
gives the number of independent components of aq as 21 
(refs 8-11). Further reduction in the number of 
independent components of aij can only be made through 
restrictions imposed by the symmetry properties of the 
material. While it is certainly possible to deal with such 
a general anisotropic material it seems reasonable for the 
present purpose to consider only a few particular cases, 
where certain symmetry restrictions may be imposed. In 
this light, the most general case to be considered is that 
of a fibre possessing cylindrical orthotropy. 

For a cylindrically orthotropic material it is assumed 
that the fibre possesses symmetry with respect to three 
mutually orthogonal planes (r, 0, z), which reduces the 
number of independent compliance constants from 21 to 
9. The resulting compliance coefficients may then be 
expressed in matrix form as: 

a l l  

a12 

a13 
aij  = 0 

0 

0 

a12 a13 0 0 0 

a22 a23 0 0 0 

a23 a33 0 0 0 

0 0 a44 0 0 

0 0 0 a55 0 

0 0 0 0 a66 

(2) 

Before considering particular implications of ortho- 
tropic anisotropy it is useful to consider one further case 
of symmetry, that of transverse isotropy which is more 
commonly referred to as fibre symmetry. In this case no 
distinction between radial and hoop directions is made, 
that is to say that all planes perpendicular to the fibre 
axis are treated as being isotropic. The number of 
independent compliance coefficients is then further 
reduced from nine to five where equation (2) is simplified 
by the relations, a11=a22, a13=a23, a44=a55 and 
a66 = 2(al 1 -  a12) for the transversely isotropic fibre. 

CYLINDRICAL ORTHOTROPY 

A x i a l  tension/compression 

One of the simplest applications to consider is that of 
determining the state of stress of a fibre in equilibrium 
under the action of a tensile force, P, directed along the 

fibre axis, z. Lekhnitskii s'9 has shown that in this case, 
for a cylindrically orthotropic rod of radius b the 
distribution of stresses in the rod is given by: 

TrO ~ Trz = ZOz = 0 

G = (Ph/To)[1 - ( r / b )  k-  1] 
(3) 

~o = (Ph/To)[ l - k ( r / b )  k-  1] 

az = (P /To) - -  ( P h / T o a 3 3 ) [ a l  3 + a23 - (az 3 + k a 2 3 ) ( r / b )  k -  z] 

where 

h k - 1  
To=ztb2 + ~b 2 - -  - -  (a23- a13) (4) 

a33 k+  1 

and k are compound constants related to the and h 
compliance coefficients by 

a l l - - a 2 2 + ( a ~ 3 - - a ~ 3 ) / a 3 3  

h -  a23 - -a13 

(5) 
/ a l  la33 --  a23 

k 
-!~/a22a33_a23 

The set of equations (3) illustrates that for a 
cylindrically orthotropic fibre subjected to a tensile load, 
P, not only is the axial stress a= dependent on radial 
position but that radial and hoop stresses (also radially 
dependent) are present. The relative magnitudes of the 
hoop and radial stresses are sensitive to differences in the 
compliance constants between the radial and hoop 
directions, most notably the difference ( a23- -a13)  
expressed in the parameter h. This difference for a 
transversely isotropic fibre is equal to zero, where no 
distinction between radial and hoop directions exists. For 
the case of a transversely isotropic fibre the system of 
equations (3) reduces to 

a 2 = P / n b  2 
(6) 

Gr = fro = TrO = Zrz = TOz = 0 

equivalent to the elementary distribution of stresses for 
an isotropic fibre. 

The relative magnitudes of any radial or hoop stresses 
which may develop in a cylindrically anisotropic fibre 
supporting a tensile load P may have important 
consequences regarding failure of the fibre when 
anisotropic failure characteristics are taken into account. 
If, for example, transverse strengths are much lower than 
axial strength, it is conceivable that a fibre tensile failure 
could be the result of a transverse failure rather than a 
true axial failure. It is also interesting to note that the 
sign of the radial and hoop stresses is dependent upon 
the direction of the axial load P (tensile or compressive), 
as well as on differences in the compliance constants (see 
equations 3). Therefore if axial tension were to produce 
compressive transverse stresses, axial compression would 
produce transverse tension, or vice versa, creating the 
possibility of differences in tensile and compressive failure 
stresses if such failures are related to transverse failures. 

Carbon f ibres .  It is instructive to examine the relative 
magnitudes of the transverse stresses produced in a 
cylindrically anisotropic fibre by examining a few model 
fibre structures. As previously mentioned, it is possible 
for graphite fibres to exhibit either an onion skin or a 
radial arrangement of the graphitic basal planes 2. To 
estimate the state of stress in a model graphite fibre the 
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Table 1 Compliance coefficients for model graphite fibres. Data from 
reference 10 

ali Radial (GPa-  l) Onion skin (GPa-  1 ) 

a 11 0.00098 0.0275 
a22 0.0275 0.00098 
a33 0.00098 0.00098 
a13 -0.00016 -0.00033 
a23 --0.00033 --0.00016 

compliance coefficients for single crystal graphite 12 have 
been used for the analysis of a perfect radial and a perfect 
onion skin morphology. Table 1 lists the relevant 
compliance coefficients (aq) for the two cases. The radial 
dependence of the axial stress a= will be minor and is not 
of importance for the present discussion. 

Radial (at) and hoop (ao) stresses produced in these 
model graphite fibres have been calculated based on 
equations (3) and the compliance constants of Table 1. 
Figure 1 summarizes the predicted values of these stresses 
as a function of radial position (r/b) within the fibre 
cross-section. The values of a~ and % have been 
normalized by the 'isotropic' value of axial stress 
(tr z = P/Tzb 2) and are presented as percentages of the axial 
stress level. Both hoop and radial stresses for the onion 
skin morphology are bounded within the cross section 
whereas the ideal radial morphology exhibits stress 
singularities at the fibre centre. For axial tension, the 
onion skin morphology is characterized by tensile hoop 
and radial stresses at the fibre centre having a value of 
0.64% of the applied axial stress. At the fibre surface the 
radial stress is zero while the hoop stress is compressive 
of relative magnitude 2.8%. 

The radial morphology, however, exhibits a tensile 
hoop stress at the fibre surface of 0.0052a= with zero 
radial stress while both hoop and radial stresses at the 
fibre centre approach infinite compression when the 
applied axial stress is tensile. Infinite core stresses can, 
however, be excluded from the present consideration 
simply by replacing this region by a small isotropic 
cylinder or by having a void at the centreline, an example 
of which will be given later. (These stress singularities 
will not be fully dealt with in this discussion, see references 
8 and 9 for a further discussion.) 

The relative importance of any hoop or radial stresses 
which may develop in an orthotropic fibre may be 
considered in light of the strength characteristics in the 
principal directions. If the magnitudes of these stresses 
are such that the radial or hoop strengths are not 
approached then only minor significance is given to their 
existence (except of course for the precise determination 
of compliance coefficients). If, on the other hand, these 
stresses approach the strength values in the radial or 
hoop directions, a closer examination of fibre failure is 
warranted. Considering the idealized form of the model 
graphite fibres presented here, a comparison of 
theoretical strengths seems justified. It is well known 13-15 
that the theoretical tensile strength relative to modulus 
( f ib /E)  is on the order of 0.1, so that characteristic 
strengths may be approximated from knowledge of the 
compliance constants given in Table 1. The relevant 
strengths for graphite are those parallel and perpendicular 
to the basal planes, which from Table 1 are estimated as 
102GPa and 3 .6GPa respectively. It should be 
mentioned that the observed strengths of materials are 

generally an order of magnitude lower (i.e. 0.01E) than 
such theoretical values (flaws, dislocations, etc.) but 
because only ratios of these strengths are important for 
the present discussion the comparison of theoretical 
values seems warranted. 

The ratio of perpendicular to parallel basal plane 
strengths for these idealized fibres is equal to 0.036 based 
on the above considerations. The direction perpendicular 
to the basal planes would be radial for the onion skin 
structure and hoop for the radial structure. From 
Figure 1 it is observed that the maximum tensile stress 
perpendicular to the graphite sheets is only 0.5%-0.6% 
of the axial stress for the two structures. This relative 
value is below the 3.6% stress level predicted for 
transverse failure to become probable. It is therefore 
unlikely that the presence of cylindrical anisotropy in 
graphite fibres is a dominant factor determining tensile 
failures especially in light of the number of idealizations 
employed in the analysis. However, as mentioned earlier, 
the sign of the transverse stresses changes in going from 
axial tension to axial compression where for the radial 
model quite large transverse tensions would be present 
near the fibre core. 

It is interesting to note for the idealized models 
discussed above that the mechanical behaviour of the 
graphite fibres is not strictly that of an orthotropic body 
possessing three mutually perpendicular planes of 
symmetry each with unique elastic constants. The elastic 
symmetry is more simplified than the general orthotropic 
case by having considered the graphitic sheets as planes 
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Figure l (a) Radial (R) and hoop (0) stress distributions in a model 
onion skin graphite fibre under axial tension (az). (b) Model radial 
graphite fibre 
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Table 2 Compliance coefficients for model PPTA fibres 

a 0 Case I (GPa-  1) Case II (GPa-  1) 

al i  0.0625 0.0625 
a22 1.316 0.112 
ass 0.00769 0.00769 
a 13 -- 0.000625 - 0.000625 
a23 -0.01316 -0.00112 

h 0.01 0.01 
k 0.22 0.75 
To/~b 2 1.01 1.00 

of isotropy possessing identical elastic constants in two 
of the three directions. 

PPTA fibres. As a further example of cylindrical 
orthotropy an idealized PPTA fibre is considered where 
structural evidence 5'6 suggests a radial arrangement of 
hydrogen bonded planes of the poly-(p-phenylene 
terephthalamide) molecules. In this case the fibre 
properties in the axial, radial and hoop directions would 
be related to covalent chemical bonding, hydrogen 
bonding and van der Waals bonding, respectively, 
representing a more general orthotropic structure than 
for graphite. 

While the distributions of radial and hoop stresses for 
a radial PPTA fibre are expected to be of a similar form 
as for radial graphite (Figure 1), the magnitudes of these 
stresses are dependent upon the specific compliance 
coefficients of the structure. Exact values of all of the 
compliance coefficients needed to solve for the stress 
distributions are unavailable but from those that are 
known and from comparisons with other anisotropic 
materials a working set of constants can be obtained for 
our model fibre. The axial modulus of PPTA fibres is 
approximately 130GPa (refs 16-19), yielding a com- 
pliance a33 of 0.00769 GPa-1 .  Values of the transverse 
moduli or compliances are not well known and vary 
depending on their method of measurement or 
estimation. Northolt  and van Aartsen 2° estimate a 
modulus in the hydrogen bonding direction of 
16-29 GP a  based on hydrogen bonding force constants 
taken from the infrared spectroscopic literature. Phoenix 
and Skelton 17 have obtained an average transverse 
modulus of 760 MPa based on transverse compression 
experiments of Kevlar ® 49 [PPTA] filaments assuming 
transverse fibre isotropy. Uniaxial fibre composite data ~ 6 
suggest a transverse modulus of 8.9 GPa  based on a 
simple series analysis of the composite transverse 
modulus. 

Using the lower value for the hydrogen bonding 
modulus of 16 GPa  the radial compliance of an idealized 
PPTA fibre may be taken as a11=0.0625GPa -1. 
Compliance values of 1.316 G P a -  ~ and 0.112 G P a -  ~ for 
a22 are obtained from the transverse compression and 
composite data, respectively. The remaining two 
constants a13 and a23 must be estimated by comparison 
to other materials due to the lack of experimental data. 
By comparison with graphite 12, pine wood s and 
cellulose 21, for example, the ratio of a13/a11 o r  a23/a22 
is expected to be on the order of -0 .01  to -0 .03 .  As a 
first approximation a value of -0 .01  will be employed 
for these ratios for the analysis of hoop and radial stresses 
in an axially loaded idealized PPTA fibre (hydrogen 

bonded planes radially arranged). By using the same 
value of this ratio (a13/all or a23/a22 ) to obtain both 
coefficients a 13 and a23 it is tacitly assumed that the radial 
and hoop Poisson effect are the same, a condition which 
will be relaxed later. 

Table 2 lists the compliance parameters used to 
evaluate radial and hoop stresses in the idealized radial 
PPTA fibre. Figures 2 and 3 summarize the results in the 
same form as for the graphite fibres. The weak direction 
for this fibre is expected to be the hoop direction which 
is perpendicular to both the chain and hydrogen bonding 
directions so that attention will be focused on the values 
of hoop stress tr 0. For  these radial structures the hoop 
stress is found to be tensile except near the fibre centre 
where, as seen before, the equations predict infinite 
compression at the centreline for an axially applied tensile 
load. The maximum value of hoop stress occurs at the 
fibre surface ( r=  b) where values of 0.77% and 0.25% of 
the axial stress are calculated for cases I and II (see Table 
2), respectively. If the Poisson constraint ( -0 .01 )  is 
relaxed for case II such that a23 assumes the value 
- 0.00336 G P a -  1 (i.e. a23/a22 = - -  0.03, a 1 sial i = -- 0.01 ), 
the magnitudes of the stresses tr, and tro are increased by 
a factor of 5.68. In this case the maximum value of a o is 
1.52% of the axial stress. Other variations of the 
compliance coefficients yield similar results within the 
range of predictions obtained from these examples. 
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Figure 2 Radial (R) and hoop (0) stress distributions in a model 
(Case I) radial PPTA fibre under axial tension (a:) 
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Figure 3 Radial (R) and hoop (0) stress distributions in a model 
(Case II) radial PPTA fibre under axial tension (a:) 
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Figure 4 Radial (R) and hoop (0) stress distributions in a hollow 
model (Case I) radial PPTA fibre under axial tension (a=) 

The relative importance of transverse stresses are of 
course determined by the characteristic strengths in the 
transverse directions relative to the longitudinal strength. 
Based on the theoretical strength relative to modulus, 
the hoop strength is very approximately 0.6-7% of the 
axial strength based on the compliances used in Table 2. 
Reference 16 gives a transverse strength of 29.6 MPa for 
a uniaxial Kevlar ~ 49 (PPTA) composite which, if the 
failure was associated with a transverse fibre failure, 
would correspond to the transverse fibre strength. This 
value of transverse strength is 0.8% of the axial strength 
based on data from the same reference. Recalling that 
the maximum ratios of hoop to tensile stresses predicted 
for the models is in the range of 0.25%-1.42%, it seems 
probable that the transverse stresses could be an 
important consideration in the tensile deformation of an 
ideal cylindrically anisotropic PPTA fibre. It is perhaps 
even more important with regard to the compression 
behaviour. 

Figure 4 illustrates the stress distributions predicted 
for a Case I PPTA fibre having a small hole along the 
fibre centreline. Here again the analysis has been taken 
from the works of Lekhnitskii a'9. The presence of the 
axial hole (hollow fibre) removes the complication of 
having stress singularities at the fibre centre which were 
found for the solid fibres (see Fi#ures 1-3). The relative 
magnitudes of the predicted radial and hoop stress are 
comparable to those discussed above for such a model 
fibre under axial tension or compression. 

Other deformation modes 
Stress analysis has also been performed for these model 

cylindrically orthotropic fibres in bending and torsion 
and the detailed results are presented elsewhere 22. The 
elastic constraint of cylindrical orthotropy simplifies the 
analysis of generalized torsion to that of ordinary torsion 
and the distribution of stresses is obtained in the same 
way as for an isotropic fibre. In bending, however, both 
radial and hoop stresses are predicted for cylindrically 
orthotropic fibres. The maxima of the radial and hoop 
stresses in bending will occur along the direction 
perpendicular to the neutral axis, as will the axial stress. 

SUMMARY 

Considerable morphological evidence exists indicating 
that both carbon (graphite) fibres and PPTA (Kevlar ®) 

fibres can exhibit preferential ordering within the fibre 
cross section (i.e. a layered radial or onion skin structure). 
While such investigations of morphological order have 
revealed anisotropic fibre structures, little attention has 
been given to the mechanical anisotropy expected of such 
structures. Anisotropic elasticity theory was applied to 
the examination of the state of stress of model radial and 
onion skin fibre morphologies for some simple 
mechanical test geometries to draw attention to the pos- 
sible complications arising from mechanical anisotropy. 
For both bending and axial loading, radial and hoop 
stresses are predicted in addition to the axial stresses for 
cylindrically orthotropic fibres as opposed to a 
transversely isotropic fibre where no radial or hoop 
stresses are predicted. 

One aspect of the importance of radial and hoop 
stresses in cylindrically orthotropic fibres experiencing 
axial tension/compression or bending is determined by 
the relative strength characteristics in these principal 
directions. For the model radial PPTA fibre considered, 
the magnitude of the predicted hoop stresses relative to 
axial stress is of the same order of magnitude of estimated 
and experimentally measured transverse strength relative 
to axial strength values. These results suggest that in light 
of directional strength dependences, transverse stresses 
arising due to material orthotropy should be considered 
in determining strength characteristics of such anisotropic 
fibres. An exact evaluation of the importance of possible 
radial and hoop stresses would require a detailed 
knowledge of compliance coefficients as well as of the 
true fibre structure, including factors such as skin-core 
morphology. Additionally, transverse stresses may arise 
due to anisotropy of thermal expansion coefficients as 
well as of swelling coefficients 23. The presence of such 
transverse stresses also dictates the necessity of a more 
thorough analysis to precisely determine even the axial 
elastic constants as shown by the complexity of the axial 
stress distributions revealed in equations (3). At present, 
however, the degree to which cylindrical anisotropy 
influences the interpretation of fibre performance is 
unknown because the engineering constants for such 
materials have never been determined in this context. 
Further experimental and theoretical work is encouraged. 
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